首页> 外文OA文献 >Likelihood Based Finite Sample Inference for Singly Imputed Synthetic Data Under the Multivariate Normal and Multiple Linear Regression Models
【2h】

Likelihood Based Finite Sample Inference for Singly Imputed Synthetic Data Under the Multivariate Normal and Multiple Linear Regression Models

机译:多元正态和多元线性回归模型下单归类合成数据基于似然的有限样本推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we develop likelihood-based finite sample inference based on singly imputed partially synthetic data, when the original data follow either a multivariate normal or a multiple linear regression model. We assume that the synthetic data are generated by using the plug-in sampling method, where unknown parameters in the data model are set equal to observed values of their point estimators based on the original data, and synthetic data are drawn from this estimated version of the model. Empirical studies are presented to show that the proposed methods do indeed perform as the theory predicts, and to compare the proposed methods for singly imputed synthetic data with the combining rules that are used to analyze multiply imputed partially synthetic data. Some theoretical comparisons between singly and multiply imputed partially synthetic data inference are also provided. A data analysis example and disclosure risk evaluation of singly and multiply imputed partially synthetic data is presented based on public use data from the Current Population Survey. We discuss the specific conditions under which the proposed methodology will yield valid inference, and evaluate the performance of the methodology when certain conditions do not hold. We outline some ways to extend the proposed methodology for certain scenarios where the required set of conditions do not hold.
机译:在本文中,当原始数据遵循多元正态或多元线性回归模型时,我们将基于单估算的部分合成数据开发基于似然的有限样本推断。我们假设合成数据是通过使用插件采样方法生成的,其中数据模型中的未知参数设置为等于基于原始数据的点估计量的观察值,并且合成数据是从此估算版本中提取的该模型。进行的实证研究表明,所提出的方法确实确实如理论所预期的那样执行,并且将所提出的用于单估算合成数据的方法与用于分析多次估算部分合成数据的组合规则进行了比较。还提供了单插补和乘插补的部分合成数据推论之间的一些理论比较。基于当前人口调查的公共使用数据,提供了一个数据分析示例和一个或多个估算的部分合成数据的披露风险评估。我们讨论了提出的方法论可产生有效推论的具体条件,并在某些条件不成立时评估了该方法论的性能。我们概述了一些方法,可以将提议的方法扩展到某些不满足所需条件的情况。

著录项

  • 作者

    Klein, Martin; Sinha, Bimal;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号